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The adiabatic three-dimensional potential energy surface and the corresponding dipole mo-
ment surface describing the ground electronic state of HN 2

+ (
~

)X 1Σ+ are calculated at different
levels of ab initio theory. The calculations cover the entire bound part of the potential up to
its lowest dissociation channel including the isomerization barrier. Energies of all bound vi-
brational and low-lying ro-vibrational levels are determined in a fully variational procedure
using the Suttcliffe–Tennyson Hamiltonian for triatomic molecules. They are in close agree-
ment with the available experimental numbers. From the dipole moment function effective
dipoles and transition moments are obtained for all the calculated vibrational and ro-
vibrational states. Statistical tools such as the density of states or the nearest-neighbor level
spacing distribution (NNSD) are applied to describe and analyse general patterns and charac-
teristics of the energy and dipole results calculated for the massively large number of states
of the strongly bound HN 2

+ ion and its deuterated isotopomer.
Keywords: Potential energy and electric dipole hypersurfaces; Ab initio CCSD(T) calcula-
tions; Effective dipoles and transition moments; Density of states and nearest-neighbor level
spacing distributions; Astrochemistry; Interstallar ions.

Protonated N2, like the isoelectronic isomer pair HCO+ and HOC+, have al-
together gained great interest in astrophysics and chemistry over the past
decades. After the early detection of the famous U89 line in dense interstel-
lar clouds1 and its initial tentative theoretical2,3 and following experimental
identification4 as J = 1–0 rotational transition line of HCO+, speculations
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have soon been made about the possibilities of an interstellar appearance of
its isoelectronic analogue, the HN2

+ ion. First observations of an appropriate
triplet of lines toward several warm clouds5–7 were subsequently verified in
the laboratory to be due to protonated nitrogen8. Since then much experi-
mental and theoretical effort has been put into more detailed characteriza-
tions of this ion; and the lower part of the vibration-rotational spectrum of
HN2

+ is nowadays experimentally well documented9–20.
On the theory side, apart from an early attempt to predict basic spectro-

scopic constants of the ion and its isotopomers applying a conventional
perturbation approach21, a more reliable study based on a rather accurate
but restricted two-dimensional potential energy surface confirmed for the
linear ground electronic state of HN2

+ equilibrium bond lengths in close
agreement with the experimentally determined values and stretching
frequencies together with IR intensities22. Based on a new fully three-
dimensional potential surface calculation on the CCSD(T) level of theory23,
a most comprehensive theoretical coverage of the spectroscopic properties
of the HN2

+ ion was achieved24. The vibration-rotational level structure was
investigated for all bound states reaching up to the first dissociation thres-
hold and the total number of bound vibrational states (J = 0) was found to
be as large as about 5000.

In view of the problems arising from handling such a massively large
number of bound states for a strongly bound molecular system such as the
HN2

+ ion, it is the intention of the present study to investigate the useful-
ness of appropriate statistical representations of all bound states and their
properties. For this purpose and in order to have a reliable basis for this
study, three-dimensional potential energy and electric dipole moment sur-
faces had to be determined at a high accuracy level of ab initio theory.

The high quality of the potential surface calculated for this study is mani-
fested by the fact that the energies obtained for the lower vibration-
rotational energy levels and the corresponding rotational and centrifugal
distortion constants of the HN2

+ and DN2
+ isotopomers are found here to be

in excellent agreement with their experimental analogues. On this basis a
meaningful discussion of the general patterns of all the bound energy levels
and their dipole properties can be started. The main goal of the study is
then to check whether standard statistical tools25–31 for analysing vibra-
tional spectra could be of some help in describing molecular reorganiza-
tions which are opposed by surmountable isomerization barriers. The
isomerization motion in the HN2

+ and DN2
+ isotopomers (migration of the

hydrogen atoms around the N2 core) is opposed by a relatively high barrier
(ca. 17 000–18 000 cm–1) which is still much lower than the lowest molecu-
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lar dissociation limit: HN2
+ (

~
)X1Σ + → H+ + N2 (

~
)X1Σ g

+ , about 44 000 cm–1

above the potential minimum. The pattern of the vibrational energy levels
pertaining to the isomerization motion has been found to consist of three
qualitatively different substructures (see Fig. 4 of ref.24): The “outer” sub-
structures corresponding to the states lying either fairly below or above the
barrier consist of reasonably equidistant levels, whereas the “inner” struc-
ture is formed by irregularly separated levels. The wavefunctions of the
latter states exhibit sizable delocalizations and are thus crucially important
for the tunelling isomerization processes. An investigation of the effects
of these irregularities in the vibrational level structures on the statistical
properties of the two isotopomers appears therefore to be worth a detailed
study.

POTENTIAL ENERGY AND ELECTRIC DIPOLE SURFACES

Jacobi coordinates were used for the potential energy and the dipole mo-
ment surface determination and in the nuclear dynamics calculations. The
NN distance is denoted in this coordinate system by r (the norm of the vec-
tor r joining the two N centers), R = |R| represents the distance between the
center of mass of the NN subunit and H (vector R pointing from the center
of mass of NN towards H), and θ is the angle between the two vectors r
and R.

The ab initio calculations of the potential energy surface were arranged to
cover the entire bound part of the potential. The calculations were done at
11 different NN distances in the range 1.60a0 ≤ r(NN) ≤ 3.00a0 and for each
r value one-dimensional dissociation potentials were determined at 7 differ-
ent θ angles equally distributed between 0 and 90° with 34 different dis-
tances R for each angle spanning the wide range 0.7a0 ≤ R ≤ 1000a0.
According to this scheme energies at more than 2500 individual geometry
points were determined to obtain a detailed characterization of the ground
state potential surface. Cs point group symmetry was used to classify the
electronic wavefunctions. The calculations were done making use of the
MOLCAS program system32.

General contraction type atomic natural orbital (ANO) bases were chosen
to approximate the molecular orbitals. They consist of 14s-, 9p-, 4d-, and
3f-type functions contracted to (7s7p4d3f)-functions centered on the nitro-
gens and for the hydrogen of 8s-, 4p-, and 3d-type functions contracted to
(6s4p3d)-functions, i.e. a total of 222 primitive functions contracted to 194
functions.
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The energies were calculated at three different theory levels: (i) a coupled-
cluster level with all single and double excitations and a perturbational esti-
mate of triple excitations based on canonical SCF orbitals as orbital basis
(SCF/CCSD(T)), (ii) the multireference configuration interaction level with
all single and double excitations using the CASSCF optimized wavefunction
as reference function (CASSCF/MR-CISD), and (iii) applying the second-
order Møller–Plesset perturbational approach with CASSCF orbitals as or-
bital basis (CASPT2). On all these theory levels the two 1s orbitals of the
nitrogens were kept frozen and the correlation energy contributions were
determined from the remaining valence electrons. In the CASSCF calcula-
tions the valence electrons were distributed among 10 active orbitals (8 a′
and 2 a′′ orbitals).

Initial test calculations of some basic spectroscopic constants of N2 and
its ion N2

+ in their ground electronic states (
~
X1Σ g

+ and
~
X 2 Σ g

+ , respectively)
were performed to judge the accuracy of the theory level at which the
potential surface calculations of HN2

+ were done. It turns out that for the di-
atomic species experimental spectroscopic constants such as equilibrium
distances re, harmonic frequencies ωe, or rotational constants Be were re-
produced on the different theory levels equally well within about a 0.1% er-
ror limit, whereas for energy values such as the dissociation energies D0, or
the ionization potentials IPe(N2) and IP(N) slightly larger average errors of
the order of 1%.

For each set of energy data calculated at the three different theory levels,
the bound part of the potential including the lowest dissociation channel
was obtained by fitting the functional form

V r R V C k l m a r rr r
k

k l m

( , , ) ( , , ){exp[ ( )]}
, ,

θ = + − −



 ×∑0

× − − × 
 + +− −{exp[ ( )]} (cos )a R R P C R C RR r

l
m θ 3

3
4

4 . (1)

In this expression V0, C(k,l,m), C3, C4, ar, aR, rr, Rr are free parameters and
Pm(cos θ) are Legendre polynomials. The last two terms were added to im-
prove the flexibility of the function in the range of the potential where the
dissociation coordinate R becomes large. Since the coefficients C3 and C4
are optimized in the fitting procedure correcting the improper shape of the
exponential representation in the large-R region, they are not optimal
suitable to provide an exact physically correct asymptotic behavior of the
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potential. For the purpose of the present study, however, focussing essen-
tially on the bound ro-vibrational states below and just above the isomer-
ization barrier, the potential representation obtained from Eq. (1) is perfectly
adequate.

The fits were done in two steps: initially the nonlinear parameters ar, aR,
rr, Rr were optimized to achieve optimum flexibility of the fitting function,
and then after fixing them at their optimized values, the C(k,l,m) parame-
ters were determined by linear fits. V0 is the absolute energy minimum of
the ab initio calculated potential surface and is quoted as theoretical dissoci-
ation energy De in the following discussion. For the CCSD(T) and MR-CISD
theory levels fits were obtained with small standard deviations. Actually,
energy points with energies smaller than the isomerization barrier are re-
produced by the fits with deviations smaller than about 10 cm–1, whereas
for points with energies in the higher region approaching the dissociation
limit their representations have larger deviations (between 10 and 100 cm–1).
The accuracy of the fitted functions is thus essentially within the accuracy
limits of the initial ab initio potential energy determinations. The potential
function obtained from the CCSD(T) fit was finally used for the following
dynamics calculations and the corresponding parameter values are listed in
Table I.

The equilibrium bond distances for the linear ground state of NH2
+ ob-

tained from the potential fits for the different theory levels differ from each
other by less than 0.005 Å and are in very close agreement with the corre-
sponding experimental numbers8 and with the results of the most compre-
hensive theoretical study on the HN2

+ ion24: re = 1.094 Å compared to
1.0928 Å 8 and 1.096 Å 24, and R(H–N) = 1.031 Å compared to 1.0336 Å 8

and 1.034 Å 24. At dissociation the optimized bond distance of the isolated
N2 was calculated here as 1.096 Å which is again close to the value of
1.0977 Å derived from experiment. For the theoretical dissociation energy
De the CCSD(T) value with 43 195 cm–1 is in reasonable agreement with the
43 243 cm–1 obtained in ref.24, whereas the energies obtained at the other
theory levels (about 43 610 cm–1) are noticeably larger. The geometry pa-
rameters for the transition state at the isomerization barrier (θ = π/2) were
calculated as r(NN) = 1.124 Å (1.126 Å 24) and R(H–NN) = 1.151 Å (1.155 Å 24).
For the height of the isomerization barrier there is again a difference be-
tween the CCSD(T) result with 17 055 versus 17 613 cm–1 on the other two
levels (ref.24 reports 17 134 cm–1).

The in-plane electric dipole moment components were evaluated relative
to the molecular center of mass directly as expectation values from the iter-
ated MR-CISD wavefunctions for all the different molecular geometries
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incorporated in the potential energy determination. For fitting the dipole
moment component functions, the ion is defined to be oriented in the
body-fixed coordinate system such that it is placed in the (y,z)-plane with
the z-axis embedded along the R vector and with the origin of the coordi-
nate system at the center of mass. In this reference configuration the µy
component turns out to be rather small and it changes only little over the
entire surface. It was therefore assumed to be equal to zero in the present
calculations. The µz component of the dipole moment, asymptotically lin-
ear in R, was expressed as

µ θz r
k

k l m

r R
m

m m
R D k l m r a r( , , ) ( , , ) {exp[ ]}

, ,

=
+

+ × −



∑H

H N2
 ×

× − × 
 + + + +− − −R a R P D R D R D R D RR

l
m{exp[ ]} (cos )θ 0 1

1
2

2
3

3 (2)

where D(k,l,m), D0, D1, D2, D3 are adjustable parameters, Pm are Legendre
polynomials, and mH, mN are the atomic masses. The parameters ar and aR
were kept fixed after a preliminary fitting. The standard deviation of this
dipole fit is 0.20 D. Table II shows the fitted parameters obtained for the di-
pole moment function.

NUCLEAR DYNAMICS CALCULATIONS

The rotation-vibrational energy levels of the ground electronic state of HN2
+

and DN2
+ were determined using the Sutcliffe–Tennyson Hamiltonian33, ex-

pressed in the following form after integration over angular coordinates34

HST ST≡ 〈 ′ ′〉 −|| | ( , , )| ||jk r R j kJH θ

− × +


 −′ ′h 2

1

2

2
2

2

2

1
2

1
2

δ δ
µ

∂
∂ µ

∂
∂j j k k

r R
, ,

− + +








− + − 


 −j j

r R

J J k

R
( )

( )
1

1
2

1
2

1 2

21
2

2
2

2

2
2µ µ µ
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( )− × + +′
+ +

+
− −

+δ
µ

δ δj j J k j k k k J k j k k kR
C C C C, , , , , , ,

h 2

2
2 1 12

+ ′′ ∑δ λ λ
λ

k k g j j k V r R, ( , , ) ( , ) (3)

with C l l k kl k,
/[ ( ) ( )]± = + − ±1 1 1 2 and where µ1 and µ2 are the appropriate re-

duced masses, j is the bending vibrational quantum number, (J,k) are the
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TABLE I
Potential energy function parameters (in cm–1) for the ground electronic state of HN 2

+ ob-
tained by fitting the expression of Eq. (1) to the ab initio energy points calculated at
the CCSD(T) levela

k l m C(k,l,m) k l m C(k,l,m) k l m C(k,l,m) k l m C(k,l,m)

1 0 0 104011.195 1 2 1 –223197.906 2 3 2 148514.875 0 6 0 –1694.603

0 1 0 –62615.066 0 3 1 152875.969 1 4 2 –138705.500 1 2 0 –44437.203

2 0 0 –258623.719 3 1 1 89405.055 0 5 2 25822.838 0 3 0 37196.078

2 1 0 209277.984 2 2 1 434397.344 3 3 2 –62013.535 2 2 0 124103.477

1 2 0 –229311.406 1 3 1 –266257.000 2 4 2 51650.637 1 3 0 –104939.133

0 3 0 103931.578 0 4 1 –7817.504 0 6 2 –4114.040 0 4 0 3374.140

3 1 0 –226522.812 3 2 1 –339528.625 0 1 3 –29112.996 3 2 0 –109324.688

2 2 0 183403.406 2 3 1 257038.969 1 1 3 94727.711 2 3 0 86493.953

1 3 0 7629.381 1 4 1 –71000.922 2 1 3 –103701.156 4 2 0 31763.074

0 4 0 –68619.711 0 5 1 31151.980 1 2 3 10310.791 3 3 0 –23579.975

5 0 0 82914.781 4 2 1 75998.570 0 3 3 21382.879 1 5 0 –590.580

4 1 0 77538.422 3 3 1 –54812.137 3 1 3 38216.645 0 1 0 892.952

3 2 0 –55849.172 2 4 1 8107.494 2 2 3 –14433.102 1 1 0 –2760.112

1 4 0 –12386.323 1 5 1 3213.171 1 3 3 –97167.336 0 2 0 1121.592

0 5 0 29259.846 0 6 1 –5411.249 0 4 3 28141.242 2 1 0 1621.112

2 4 0 3138.542 1 2 2 –20537.146 2 3 3 142138.047 1 2 0 –861.689

0 6 0 –4916.937 0 3 2 27862.506 1 4 3 –73914.062 1 1 0 464.938

0 1 1 –89857.227 1 3 2 –64825.086 0 5 3 10031.315 0 2 1 –363.191

1 1 1 219594.781 0 4 2 36165.129 3 3 3 –52088.738 2 1 1 –439.736

2 1 1 –231505.109 4 1 2 1164.599 2 4 3 27761.021 1 2 1 352.075

a C3 = –59219.755 cm–1, C4 = 207614.111 cm–1; the nonlinear parameters ar = 1.0 Å–1, aR =
1.19 Å–1; rr = 1.094869 Å, Rr = 1.578718 Å held fixed after their preliminary determination.



rotational quantum numbers, and gλ(j,j′,k) are the Gaunt coefficients35.
Vλ(r,R) represents the potential of Eq. (1) after performing the Sutcliffe–
Tennyson integration

V r R V r R P( , , ) ( , ) (cos )θ θλ λ
λ

= ∑ . (4)

The variational solution of the eigenvalue problem was achieved by
diagonalizing the above Hamiltonian matrix (Eq. (3)) in terms of basis sets
which, apart from Legendre polynomials for the bending functions, con-
sisted of eigenfunctions obtained numerically from the corresponding un-
coupled one-dimensional Schrödinger equations for the stretching motions
along the r and R coordinates. Numerical basis functions are known to be
superior compared with analytical functions such as for example harmonic
oscillator functions which are often used in algebraic solutions of vibra-
tional eigenvalue problems. In order to be able to describe all the bound
states up to the highly excited levels close to the dissociation threshold
with sufficient accuracy, large and flexible basis sets were employed consist-
ing of 30 numerical functions for the high-frequency NN-stretching coordi-
nate r, 55 numerical functions for the low-frequency stretching coordinate
R, and 60 bending basis functions. The actual basis contained 11 311 prod-
uct functions for HN2

+ and 12 244 functions for DN2
+ . It is stressed here

again that even much larger basis sets would be required when aiming of
the same accuracy level if the numerical stretching functions were replaced
by analytical functions.
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TABLE II
Electric dipole moment function parameters (in D) for the ground electronic state of HN 2

+

obtained by fitting the expression of Eq. (2) to the ab initio dipole moment data obtained
from the MR-CISD wavefunctionsa

k l m D(k, l, m) k l m D(k, l, m) k l m D(k, l, m) k l m D(k, l, m) k l m D(k, l, m)

1 0 0 4.5275 3 0 0 3.7054 3 2 0 –1.3541 0 2 2 19.1966 1 3 2 –3.9033

0 1 0 1.6585 0 3 0 –44.8154 0 5 0 –4.9055 2 1 2 –4.5848 0 4 2 6.8703

2 0 0 –8.0303 1 3 0 2.0846 0 1 2 –6.9761 0 3 2 –19.0531 1 1 4 –0.2162

0 2 0 22.1101 0 4 0 26.2060 1 1 2 3.9693 2 2 2 4.4611 0 2 4 0.7437

0 3 4 –0.3607

a D0 = 4.6012 D, D1 = –10.2954 D Å, D2 = 6.4966 D Å2, D3 = –1.1276 D Å3; the nonlinear
parameters ar = 0.02 Å–1, aR = 0.220316 Å–1 held fixed after their preliminary determination.



STATISTICAL ANALYSIS

Standard statistical approaches described in the literature25–31 were applied
to characterize the properties of some of the calculated quantities. The
nearest-neighbur spacing distribution (NNSD) is one of the simplest quan-
tities in this context used for the local analysis when fitted to the Brody
distribution36

P s sBro = + − +( ) exp( )ω α αω ω1 1 (5)

with α = [Γ((ω + 2)/(ω + 1))]ω+1 and where the phenomenological Brody pa-
rameter ω is used to semi-quantitatively describe the degree of the chaos in
the quantum dynamical system. For the two extreme cases, ω = 1 and 0, the
Brody distribution coincides, respectively, with the Wigner distribution37

P s sWig = −





π π
2 4

2exp (6)
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TABLE III
Experimental and calculated energies (in cm–1) of the lowest vibrational and J = l2 rotational
levels of HN 2

+ and DN 2
+

v1 v2 v3 Exp.a Calc. Exp. Calc.

HN 2
+ DN 2

+

0 1±1 0 688.373 687.515 544.468b 543.904

0 20 0 1363.337 1364.843 1081.247

0 2±2 0 1386.503 1385.236 1093.197

0 3±1 0 2051.359 2053.533 1630.702

0 3±3 0 2093.978 2092.620 1647.536

0 00 1 2257.873 2247.073 2024.041c 2018.082

0 40 0 2726.230 2728.692 2161.390

0 4±2 0 2748.833 2750.336 2173.968

0 4±4 0 2810.354 2809.217 2206.623

0 1±1 1 2946.617 2936.619 2564.420

1 00 0 3233.958 3233.604 2636.982d 2631.048

1 1±1 0 3898.680 3899.231 3163.242d 3157.072

a Ref.19, b ref.13, c ref.10, d ref.11

l2



predicted by the random matrix theory which corresponds to a completely
chaotic case, and the Poisson distribution38

P sPois = −exp( ) (7)

corresponding to fully integrable dynamics. In all these expressions
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TABLE IV
Experimental and calculated rotational constants Bv (in cm–1) and centrifugal distortion con-
stants Dv (in 10–6 cm–1) of the lowest vibrational and J = l2 rotational levels of HN 2

+ and DN 2
+

v1 v2 v3 Bexp
a Dexp

a Bcal
b Dcal

b Bcal
c Dcal

c Bexp
d Dexp

d Bcal
c Dcal

c

HN 2
+ DN 2

+

0 00 0 1.55392 2.89 1.547 2.9 1.55093 2.94 1.28605d 2.05 1.28422 2.06

0 1+1 0 1.55326 3.16 1.547 2.9 1.55014 2.96 1.28693d 2.08 1.28511 2.09

0 1–1 0 1.56173 3.29 1.555 3.0 1.55860 3.06 1.29423d 2.18 1.29239 2.18

0 20 0 1.56160 9.29 1.555 8.6 1.55834 9.71 1.29346 14.45

0 2–2 0 1.56093 5.77 1.554 3.0 1.55737 3.06 1.29307 2.20

0 2+2 0 1.56049 –3.68 1.554 –2.6 1.55736 –3.55 1.29308 –9.97

0 3+1 0 1.55638 4.97 1.550 5.1 1.55325 5.34 1.29064 6.89

0 3–1 0 1.57386 5.78 1.567 5.3 1.57057 5.80 1.30550 7.63

0 3+3 0 1.56312 0.91 1.556 1.55992 0.83 1.29718 –1.69

0 3–3 0 1.56316 1.67 1.556 1.55992 0.73 1.29711 –3.00

0 00 1 1.54291 2.63 1.537 2.3 1.53969 2.95 1.27809d 2.05 1.27616 2.06

0 40 0 1.56943 23.2 1.563 20.4 1.56609 22.3 1.30280 35.8

0 4–2 0 1.56859 7.03 1.561 5.0 1.56507 5.27 1.30245 6.26

0 4+2 0 1.56837 –13.7 1.562 –12.1 1.56503 –13.9 1.30246 –27.1

0 4+4 0 1.56516 1.05 1.56202 1.05 1.30102 –1.62

0 4–4 0 1.56516 1.05 1.56202 1.10 1.30102 –1.62

0 1+1 1 1.54185 1.74 1.536 2.9 1.53835 2.92 1.27636 2.13

0 1–1 1 1.55061 3.13 1.544 3.0 1.54723 3.07 1.28420 2.17

1 00 0 1.54132 2.87 1.535 2.9 1.53835 2.92 1.27450d 2.01 1.27252 2.01

1 0+1 0 1.54087 3.07 1.534 2.8 1.53780 2.92 1.27683e 1.86 1.27475 1.97

1 0–1 0 1.54948 3.18 1.543 3.0 1.54638 3.04 1.28314e 1.86 1.28127 2.11

a Ref.19, b ref.24, c present calculation, d ref.20, e ref.11

l2



s
S
D

= = spacing
mean spacing

(8)

where spacing means in the present context the difference between ener-
gies or effective dipoles of adjacent levels of the same symmetry and mean
spacing is its averaged value.

The shapes of the standard distribution functions are derived under a set
of simplifying assumptions. In general they provide only a qualitative de-
scription of the numerically derived distributions. However, in order to get
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TABLE V
Coefficients (in cm–1) of the vibrational energy term formula of Eq. (11) for the low lying
vibrational states of HN 2

+ and DN 2
+ a

k l m C(k,l,m) k l m C(k,l,m) k l m C(k,l,m)

HN 2
+

1 0 0 3403.394 2 1 0 0.2521454 2 0 2 0.2263882

0 1 0 1386.604 2 0 1 –3.7328790 1 3 0 –0.0324283

0 0 1 2286.019 1 2 0 –0.1946181 1 2 1 –0.1640400

2 0 0 –69.82826 1 1 1 1.9409890 0 4 0 –1.0838620

1 1 0 –46.30142 0 3 0 1.1794510 0 1 3 –0.0247541

1 0 1 –15.26862 0 2 1 0.2077752 5 0 0 0.0016694

0 1 1 –8.484573 0 0 3 0.2387719 0 5 0 0.2480011

0 0 2 –13.50880 0 6 0 –0.0288773

0 7 0 0.0016968

0 8 0 –0.0000400

DN 2
+

1 0 0 2719.033 3 0 0 0.6887511 4 0 0 –0.0360610

0 1 0 1091.172 2 1 0 0.5737271 1 3 0 0.0360213

0 0 1 2060.912 2 0 1 0.4850224 1 2 1 –0.1181748

2 0 0 –23.61578 1 2 0 0.2228044 0 4 0 –0.1636878

1 1 0 –37.93500 1 0 2 –1.14037330 0 1 3 –0.1065540

1 0 1 –49.08952 0 2 1 –1.1933630 0 5 0 0.0219050

0 2 0 3.486832 0 1 2 0.4987691 0 0 5 –0.0010354

0 1 1 6.411305 0 6 0 –0.0007839

0 0 2 –10.48017

a 110 lowest states of HN 2
+ with v2 ≤ 10 and 130 lowest states of DN 2

+ with v2 ≤ 11 repro-
duced with ~1 cm–1 standard devitations.



a more quantitative representation of these distributions a number of
empirical functions were probed. In the present case the following two
empirical expressions were found to give accurate fits to the numerical dis-
tribution results

P C P s C s C s Cedf1 Wig= + − −1 2 3 4( ) exp[ ( )] (9)

and

P C s C s C C s Cedf2 = − − − −1
3

3 2 4 2
3exp[ ( ) ( ) ] (10)
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TABLE VI
Coefficients (in D) of the electric dipole term formulaa for the low-lying vibrational states of
HN 2

+ and DN 2
+

k l m D(k,l,m) k l m D(k,l,m) k l m D(k,l,m)

HN 2
+

0 0 0 3.48968 2 1 0 0.00431 2 0 2 0.00260

1 0 0 0.08627 1 1 1 0.00144 1 3 0 0.00013

0 1 0 –0.10645 0 2 1 0.00115 0 4 0 –0.00001

0 0 1 –0.03790 0 1 2 0.00253

2 0 0 0.01344 0 0 3 –0.00078

1 1 0 –0.01529

1 0 1 0.03660

0 2 0 0.00231

0 1 1 –0.01377

DN 2
+

0 0 0 3.50705 3 0 0 –0.00139 2 0 2 0.00180

1 0 0 –0.01546 2 1 0 –0.00113 0 4 0 –0.00002

0 1 0 –0.05188 2 0 1 –0.00913

0 0 1 –0.00797 1 1 1 –0.00173

1 1 0 0.00508 1 0 2 –0.00779

1 0 1 0.04429 0 3 0 0.00064

0 2 0 –0.00313 0 0 3 –0.00018

0 1 1 0.00228

a µ(v1,v2,v3) = ∑k,l,m D ( , , )( ) ( ) ( )k l m v v vk l m
1

1
2 2

1
2 3

1
2

+ + + ; 110 lowest states of HN 2
+ with v2 ≤ 10

and 130 lowest states of DN 2
+ with v2 ≤ 11 reproduced with ~0.01 D standard devitations.



(Ci (i = 1, 4) being “free” parameters) for the energy and effective dipoles,
respectively. The function of Eq. (9), an extension of the Wigner distribu-
tion function (6), has previously been found to give a quantitatively accu-
rate representation of the numerical energy level distributions in the case of
the FHF– negative ion30.

RESULTS AND DISCUSSION

The lowest vibrational states of the HN2
+ and DN2

+ ions show a level struc-
ture which corresponds to systems with strongly linear geometries. For the
assignment of these lower levels it is thus suitable to make use of the quan-
tum numbers that are commonly used to describe the dynamics of linear
molecules. For some of the higher states, however, which exhibit a notice-
able tunnelling behavior (“tunnelling” states), this labeling system becomes
inappropriate and quantum numbers characterizing nonlinear molecule
motions39 are required instead. The quantum numbers actually applied in
the present study were thus v1 to account for the H–N and v3 for the N–N
stretching vibrations and v l

2
2 and v2 to label the low-lying and “tunnelling”

bending states, respectively.
The excellent agreement of the present calculated lowest vibrational lev-

els with their experimental analogues is illustrated in Table III. The energies
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TABLE VII
Typical vibrational transition moments | | | |〈 ′′ ′′ ′′ ′ ′ ′ 〉v v v v v vz1 2 3 1 2 3µ (in D) for the low-lying vibra-
tional states of HN 2

+

000←000 3.446a 100←100 3.589 010←010 3.347 001←001 3.463

200←200 3.716 020←020 3.238 030←030 3.137 002←002 3.458

000←100 0.244b 100←200 0.357 200←300 0.452 300←400 0.537

010←110 0.244 110←210 0.357 210←310 0.453 310←410 0.538

001←101 0.244 101←201 0.358 201←301 0.452 301←401 0.536

000←010 0.050 010←020 0.096 020←030 0.139 030←040 0.178

100←110 0.052 110←120 0.099 120←130 0.140 130←140 0.177

001←011 0.050 011←021 0.095 021←031 0.137 031←041 0.175

000←001 0.014 001←002 0.017 002←003 0.019 003←004 0.018

010←011 0.008 011←012 0.010 012←013 0.010 013←014 0.009

100←101 0.034 101←102 0.046 102←103 0.053 103←104 0.057

a Experimental value18: 3.4 (±0.2) D, b experimental value17: 0.23 (±0.02) D.



are given relative to the zero-point energies obtained here at 3496.9 cm–1

for HN2
+ and at 2911.0 cm–1 for DN2

+ (for comparison, in ref.24 for HN2
+

a value of 3507.8 cm–1 has been given). The agreement between calcula-
tions and experiment is mostly within a few wavenumber units; mainly lev-
els involving the N–N stretching excitations show deviations up to about
10 cm–1. Similarly, the present calculated rotational constants Bv and cen-
trifugal distortion constants Dv of the lowest vibrational states are also very
close to the corresponding constants derived from experiments (Table IV).
The close matching of the low-lying vibration-rotational levels shown in the
two tables evidences thus the high accuracy of the calculations and of the
theory applied here and it demonstrates its adequacy to make physically
correct predictions of the studied states. All the calculated states lying
below the isomerization barrier (treating the tri-atomic ion as nonlinear
species there are 165 states for HN2

+ and 265 states for its deuterated isomer,
in the linear case there would be much more which are in the present treat-
ment considered as rotational states) can be assigned safely and their ener-
gies are fitted fairly quantitatively (Table V) using the standard Dunham
expansion

G(v1,v2,v3) = C( , , )
, ,

k l m v v v
k l m

k l m
1 2 3

1
2

1
2

1
2

+





+





+



∑ . (11)
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FIG. 1
Calculated and experimental (ref.40) v1 absorption band of HN 2

+



This holds also for the effective dipole moments 〈v1v2v3|µz|v1v2v3〉 (Table VI).
These calculated moments exhibit a higher degree of mode specificity than
the corresponding energies and they allow therefore a safer assignment of
the calculated states. The fitted expressions actually do not only reproduce
closely the energies and moments of the fitted lowest states, but they also
provide quite accurate predictions for the stretching states lying quite
above the isomerization barrier. The calculated data are in excellent agree-
ment with the corresponding available experimental numbers as docu-
mented in Table VII and in Fig. 1. The quasi-linearity of the HN2

+ ion is
underlined by the fact that for the lower vibrational states in Table III the
energy difference between the l2 = 0 and ∆l2 = ±2 levels is initially small,
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FIG. 2
Calculated values of the ∆k = 1 (e → f and f → e) frequencies (upper panel) and transition mo-
ments (lower panel) for J = 1, k = 0 and 1 states of HN 2

+



increasing, however, for higher vibrational states as illustrated also in the
upper panel of Fig. 2 which shows that the patterns of the f → e and e → f
transition plots are increasingly non-parallel with increasing excitation
energy and become finally rather chaotic in the energy region close to the
isomerization barrier. This figure demonstrates that the mode specificity
of the states lying below the isomerization barrier also holds for the rota-
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FIG. 3
Differences between the energies (upper panel) and electric dipoles 〈v1v2v3|µz|v1v2v3〉 (lower
panel) of the antisymmetric (odd) and symmetric (even) vibrational states of HN 2

+. The states
are labeled by the integer N increasing according to the energy content of the states



tional states allowing thus a better rationalization of the observed spectral
patterns.

The Dunham expansion, however, becomes inappropriate when trying
to represent states with higher excitations of the bending mode (v2).
Whereas expression (11) is still perfectly adequate for reproducing the
quasi-degenerate states with bending energy contents smaller than the
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FIG. 4
Calculated values of the vibrational energies of states lying energetically either only slightly
above (lower panel) or much above (upper panel) the isomerization barrier. Labeling of states
as in Fig. 3



isomerization barrier, it fails to describe levels with bending energies com-
parable to the barrier energy. These states exhibit irregular tunnelling
splittings as shown in Fig. 3 and can obviously not be fitted by any simple
energy formula. States, on the other hand, with bending energy contents
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FIG. 5
Calculated values of the bound even and odd vibrational states of HN 2

+ (upper panel) and the
cumulative spectral density function of the even states (lower panel). W(E) counts the number
of states containing energies up to E. “Numerical” represents the numerically exact results,
“Adiabat” the results obtained using the adiabatic approximation, and “Scaled” marks the plot
obtained by scaling the adiabatic results by a factor of 1.295. Labeling of states as in Fig. 3



much higher than the isomerization barrier assume a free-rotor pattern and
could, at least in principle, be fitted by an appropriate energy term formula.
An actual attempt, however, to obtain a fit of these and other highly ex-
cited states becomes soon impractical because the intrinsic complexity of
the energy pattern and the density of states grow rapidly with increasing
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FIG. 6
Calculated effective electric dipoles of the bound states of HN 2

+ (upper panel) and a histogram
of their magnitudes (lower panel), where “Numerical” represents the numerically exact results,
whereas “Empirical” labels results obtained by smoothing the calculated data using the empiri-
cal expression of Eq. (10). Labeling of states as in Fig. 3



excitation. These highly excited states are strongly mixed and their assign-
ments in terms of distinct quantum numbers are thus meaningless. Other
description techniques focussing more on a characterization of the global
behavior of the large number of states are required instead. Characteriza-
tions of this kind are used in Figs 5–8 to describe the energy and effective
dipole moment data of such highly excited states. It should be noted at this
point that the characteristics corresponding to the odd symmetry levels ex-
hibit exactly the same shapes as their even symmetry counterparts and that
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FIG. 7
The nearest-neighbor energy level spacing distributions of the even states (upper panel) and
for both symmetry states (lower panel), respectively



the functional forms of the calculated characteristics are practically mass-
independent.

From the upper panel of Fig. 5 it follows that the energies of the states
lying above the isomerization barrier increase rather slowly and smoothly
perturbed by only small-amplitude fluctuations as demonstrated for two
different energy regimes in the two panels of Fig. 4. A similar smooth global
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FIG. 8
The nearest-neighbor electric dipole spacing distributions of the even states (upper panel) and
for both symmetry states (lower panel), respectively



behavior follows therefore for the level density of states plotted in the lower
panel of Fig. 5. A direct evaluation of this level density function W(E),
which plays an essential role in the statistical theories of the rate constants,
by a straightforward diagonalisation of the dynamical Hamiltonian is, how-
ever, unfeasible for large molecular systems. Reliable approximate strategies
for its evaluation need to be introduced.

As pointed out earlier in our former study on FHF– (see Fig. 1 in ref.30), a
possible way to simplify this problem can be found by applying an appro-
priate adiabatic separation of the dynamical variables with largely different
energy contents. In the present case a corresponding adiabatic approxima-
tion can be obtained when averaging over the high-frequency N–N stretch
motion and transforming thus the three-dimensional problem into a set of
two-dimensional eigenvalue equations for the remaining low-frequency
motions, the H···NN stretch and the bending. However, due to larger non-
adiabatic couplings in HN2

+ , this separation is not as quantitative as in the
previously studied FHF– negative ion. On the other hand, the plots in the
lower panel of Fig. 5 show that the exact numerical level density and its
adiabatic approximation are essentially in good agreement with each other
differing only by a constant scaling factor. In contrast to the smooth energy
curves in this figure, the corresponding excitation dependence of the effec-
tive electric dipoles appears to be rather chaotic as illustrated in the upper
panel of Fig. 6. The lower panel shows, on the other hand, that its statisti-
cal distribution function P(µeff) can be represented rather accurately in
terms of the fairly simple Maxwellian curve obtained when fitting the em-
pirical expression of Eq. (10).

The statistical behavior of the nearest-neighbor spacing distributions
(NNSD) of the calculated vibrational energies and effective electric dipole
moments are displayed in Figs 7 and 8. As in all other systems studied in
the literature (cf., e.g., refs29,30 and references therein), the distribution of
the nearest-neighbor energy spacings of correlated (“single symmetry”) energy
levels has a maximum at a finite value (even states in the upper panel of
Fig. 7), whereas the corresponding distribution of the nearest-neighbor
effective dipole spacings coincides practically with a Gaussian-like distribu-
tion (upper panel of Fig. 8) as can be expected from ref.40. The energy distri-
bution of the even states in the peak region is best represented by a Brody
distribution, while in the tail region for larger s values the distribution
resumes the Poisson character. The distributions obtained for all states of
both symmetries (lower panels of the two figures) resemble the Poisson dis-
tribution throughout. An expected striking indication for a tunnelling ef-
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fect in the energy distributions does not seem to be evidenced by the
present calculations.

However, it is interesting to refer at this point to the results obtained pre-
viously for a model system41 which describes the tunnelling motion of a
particle confined in a x,y-rectangular infinite well with a very thin but high
wall centered at x = y. In this system the antisymmetric states comply with
the Poissonian behavior, but the symmetric (tunnelling) states give rise to a
NNSD with a finite peak in a narrow interval at the smallest energy spac-
ings and only the remaining distribution is again essentially Poissonian (see
Fig. 2 of ref.41). While in the present calculations no difference is obtained
for the distributions of the states of different symmetry, the NNSD of the
even states in the upper panel of Fig. 7 does actually show a peak at a small
energy spacing and a Poissonian behavior in the tail region. Rather than
interpreting this finding as a safe indication for a tunnelling effect, more
detailed tests of the impact of tunnelling states on nearest-neighbor level
spacing distributions are required.

CONCLUSIONS

Energies and electric dipole transition moments of the ro-vibrational states
of strongly bound HNN+ and DNN+ cations are evaluated ab initio applying
a high state-of-the-art level of theory. The low-lying states are fitted, fairly
quantitatively, using the Dunham expansions allowing thus for meaningful
assignments of these states in terms of the standard vibrational and rota-
tional quantum numbers. The calculated characteristics are found to be in
excellent agreement with available experimental data ensuring thus that
the results predicted for the so far unobserved states are reliable.

To gain insight into their global behavior, the calculated higher excited
states are characterized by their densities and nearest-neighbor level spac-
ing distributions (NNSD). With the exception for the distribution of the
nearest-neighbor energy spacings of the correlated (“single symmetry”)
energy levels, the calculated characteristics resume shapes which are in rea-
sonable agreement with their theoretical counterparts predicted by the
random-matrix theory. The shapes of the “anomalous” single-symmetry
energy spacing distributions acquire forms which are close to the distribu-
tion function pertaining to the symmetric states of a one-dimensional
model consisting of an infinite rectangular well with a δ-function finite
barrier. We find it thus legitimate to surmise that this shape could be an
indication of the tunnelling motion. To get a convincing support for this
conjecture, we plan more detailed calculations which will probe the energy
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spacing distributions as functions of the barrier widths and heights varying
over a wide-range of their values.
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